空压机安全运行技术
作为一种动力能源,空压机的应用领域越来越广泛,在整个生产制造中起着至关重要的左右。但是,空压机在运行过程中,由于冷却换热效果不好、压力不正常、排气量不足等原因,导致空压机实际运行时间较短,机器停车与启动频繁,无法达到高效安全运行的要求,直接影响生产,给企业带来不可估量的损失。因此正确识别空压机的故障,分析原因,减少故障次数,提出预防措施,确保空压机安全运行是非常必要的。
1 空压机故障类型及原因分析
1.1 排气量不足
排气量的不足主要的表现是压力达不到终点压力,从故障现象看很可能是由于以下几种原因造成:
一是入口空气过滤器的故障,当过滤器中的积垢产生堵塞,就会使排气量减少;而吸气管过长,管径较小,造成吸气阻力增大时,就直接影响了排气量。
二是空压机转速过低会使排气量下降:空气压缩机的排气量是按规定的海拔高度、吸气温度、湿度设计的,如果在超过上述标准的高原上使用时,就会造成吸气压力降低,排气量也随之降低;传送皮带打滑一会降低空压机的转速,进而影响排气量降低。
三是由于零件磨损导致空压机各配合间隙的变化而引起的:气缸、活塞、活塞环磨损严重、超差,造成相关间隙增大,泄漏量增大,严重的话就影响了排气量。
四是空压机系统严重漏气,主要是由于填料函不严密从而产生漏气使气量降低,究其原因:首先,是填料函本身制造时不合要求;其次,可能是在安装时,活塞杆与填料函中心没有对好,产生磨损、拉伤等造成的漏气。
五是空压机压力阀的故障对排气量的影响,主要是指吸、排气阀的阀座与阀片间落入金属碎片或其它杂物,造成关闭不严,形成漏气。
此外,气阀弹簧力与气体力匹配的不好也会影响排气量,弹力过强则使阀片开启迟缓,弹力太弱则阀片关闭不及时,这样不但影响了排气量,严重的话会影响到功率的增加,甚至影响气阀阀片、弹簧的使用寿命。
1.2 排气温度异常
排气温度不正常是指其高于设计值,主要是冷却系统故障导致的。从理论上进,影响排气温度增高的因素有:进气温度、压力比、以及压缩指数(对于空气压缩指数K=1.4)。实际情况影响到吸气温度高的因素如:中间冷却效率低,或者中冷器内水垢结多影响到换热,则后面级的吸气温度必然要高,排气温度也会高。气阀漏气,活塞环漏气,不仅影响到排气温度升高,而且也会使级问压力变化,只要压力比高于正常值就会使排气温度升高。此外,水冷式机器,缺水或水量不足均会使排气温度升高。
1.3 超常的振动和噪音
空压机如果某些部件出现故障时,就会发出异常的响声,通常来讲,操作人员通过听样是可以判别出异常的振动和噪声。驱动电动机运行不稳定,轴的对中状态改变都会产生异常的振动和噪声。活塞与缸盖间隙过小,直接撞击;活塞杆与活塞连接螺帽松动或脱扣,活塞端面丝堵桧,活塞向上串动碰撞气缸盖,气缸中掉入金属碎片以及气缸中积聚水份等均可在气缸内发出敲击声。排气阀片折断,阀弹簧松软或损坏,负荷调节器调得不当等等均可在阀腔内发出撞击声。
1.4 过热故障
在十字头与滑板、曲轴和轴承、填料与活塞杆等产生摩擦的位置,温度过高并超过规定的数值就称为过热。过热所带来的后果:一是加快磨擦副件的磨损。二是过热使大量的热能。
不断积聚直致烧毁磨擦面以及烧抱而造成机器发生重大事故。造成轴承过热的主要原因为:轴承与轴颈贴合不均匀或接触面积过小;轴承偏斜曲轴弯曲,润滑油粘度太小,油路堵塞,油泵有故障造成断油等;安装时没有找平,没有找好间隙,主轴与电机轴没有找正,两轴有倾斜等。
引起空压机故障的原因很多,既有设计制造上的原因,也有操作维护及管理上的原因,应通过综合分析这些故障提出一些有效的解决方案,延长空压机寿命。
2 空压机日常运行故障解决方案
2.1 优化冷却系统
温度异常是造成空压机发生故障事故的主要原因,所以如何降低系统温度,保持一个高效的冷却系统对延长空压机的寿命至关重要。可以从以下几个方面对空压机的冷却系统进行优化。
通过改善压缩机机房的通风条件,降低空压机温度。机械设备的工作环境,对机械设备使用有较大的影响,降低设备的温度,可以减轻对设备带来的不利影响。随着机组使用年限的增加,机组发热量也日益上升,原有的从进风道进气来满足产气和冷却机组的方式已不适用。如杭州卷烟厂通过将机组左右两扇边门改造成下进风的百叶形式,将环境温度的空气从设备下部吸入,再从上部的排风扇排出,有效降低机组温度。该公司原有机组冷却排气直接排入排风通道,然后从屋顶排出,但由于机组排风风扇功率小。
通道内空气换气率不高,从而使得通道内温度升高,影响机组冷却。通过在排风通道口加装排风扇,增加通道内空气流速,增加通道内空气换气次数,从而使得机组冷却效果提升。
避免冷却系统结垢。冷却系统结垢是空压机温度异常产生故障的主要原因,其使冷却水不能有效地与气缸壁进行换热,导致气缸运行温度升高而引发事故。了解决这一问题,国内外许多学者进行了大量的研究工作,并取得了一些研究成果。主要通过加强冷却水水质的监控和管理,对冷却水进行改造和定期对空压机进行清洗等方法来避免冷却系统结垢,其中对空压机清洗除垢法包括是机械除垢法和化学除垢法等,因为气缸水套的结构比较复杂,机械除垢法很难清除干净,所以,目前的除垢方法以化学除垢法为主。
2.2 设备的维护保养
空压机的基本保养包括:空气滤芯的更换、保养;机油滤芯的更换、空压机油的更换;油气分离芯的更换和保养;联轴器的安装与保养;冷却器的保养与维护等。
(1)空气滤芯的维护与保养。空气滤清器的作用是过滤掉吸入空气中含有的尘埃污物,将过滤后的干净空气送入压缩腔压缩。空气滤芯好每星期保养一次,拧开压盖螺母,取出空滤芯,用0.2~0.4MPa的压缩空气,从空滤芯内腔向外吹除在空滤芯外表面的尘埃颗粒,用干净的抹布将空滤壳内壁上的赃物擦干净。回装空滤芯,注意空滤芯前端部的密封圈要与空滤壳内端面贴合严密。空滤芯新机磨合期运行500h后应更换,正常情况3000h更换一次。清洁或更换空滤芯时,部件是必须一一合对,严防异物落入进气阀。
(2)机油滤芯的更换、空压机油的更换。正常情况下建议每1500~2000h更换新滤芯,换机油时好同时更换油滤芯。空压机油对空压机的性能具有决定性的影响,新机磨合期500h后进行油品更换,以后一般每运行3000h更换新油。换油时好同时更换油过滤器。无论是机油滤芯还是空压机油,在环境恶劣的场所使用缩短更换周期。
(3)油气分离芯的更换和保养。每一年或在监控器发出需维护信号时,要更换分离芯。分离芯只能更换,不能清洁之后再用。
(4)联轴器的安装与保养。联轴器关系着设备的精密程度,对其装配误差的要求比较高,分别经过轴向偏差校准,然后在电机下垫片调整轴向偏差,水平间隙和角度偏差校准等一系列校准调整后才能装上螺栓和锁紧垫片。
2.3 规范操作
规范的操作可以提高空压机的运行效率,减少故障发生的次数,减缓设备零件的疲劳,延长空压机的使用寿命。规范的操作应该包括以下方面。
空压机开机前请先确认管路阀门处于正常位置,空压机面板显示正常,然后按启动按钮启动。关机时请按停机按钮停机,空压机会自动卸载停机。非紧急状况请勿按红色紧急停机按钮停机。
空压机每运行500h,必须对空压机内部的电气接线重新进行检查、紧固。每天记录空压机的主要参数,以备发生故障后为分析处理提供依据。请每天检查油位,保证冷却剂足够并观察内部管路是否有渗漏。
3 结语
作为提高气体压力和输送气体的机械,空压机不可避免的出现故障。对空压机几种故障进行系统的分析,找出故障的根本原因,通过对空压机设备设施的不断改善,严格按设备操作规程作业,制定维护计划,定期保养,并保持设备清洁,使空压机在佳工作状态下长期安全运行,以提高设备维护效率和空压机使用率,延长空压机使用寿命。
气动系统常见故障与简易诊断方法
气动系统由如下四部分组成:
一、气源
包括空气压缩机、储气罐、空气净化设备和输出管道等。为气动设备提供洁净、干燥的具有稳定压力和足够流量的压缩空气,它是气动系统的能源装置。
二、气动执行元件
是把气体的压力能转变成机械能,实现气动系统对外做功的机械运动装置。
三、气动控制元件
包括有压力、流量、方向等动力控制元件和传感器、逻辑元件、伺服机构等信号转换、执行运算等一类的元件。
四、辅助元件
为压缩空气的净化、元件的润滑、元件之间的连接、消音等所需要的辅助装置。如油雾器、消音器、管接头、气管等。
气动系统故障常见类别
气动系统的常见故障,如果按照发生时间段来看,我们可以分为三类。
类:设备早期故障
主要是指设备调试阶段和运转初期(刚开始运转的几个月)发生的故障,引发故障可能的原因如下:
1、设计方面问题
❂设计时对元件的材料选用不当,加工工艺要求不合理等;
❂对元件的功能性能了解不够,元件选择不当;
❂空气处理系统不能满足要求,设计出现错误。
2、制造方面问题
❂元件内孔的研磨不合要求;
❂不清洁安装,零件装反装错;
❂零件材质不符合要求,外购零件(如电磁铁、密封圈等)质量差。
3、装配方面问题
❂装配时气动元件及管道内吹洗不干净,杂质混入造成气动系统故障;
❂装配气缸时存在偏心;
❂管道的固定和防振未采取有效措施。
4、维护保养方面问题
比如未及时排除冷凝水,没及时给油雾器补油等。
第二类:设备中期故障
主要是指系统在稳定运行期间突然发生的故障。
❂空气或管路中残留杂质混入导致相对运动件卡死;
❂电磁阀突然烧毁;软管突然破裂;
❂气动三联件中发生破损;
❂突然停电造成的回路错误动作等。
第三类:设备晚期故障
指个别或少数元件已经达到使用寿命后发生的故障,也称为老化故障(寿命故障)。
此类故障在参考各元件技术参数合预测发生期限的基础上,相对容易应对处理。
气动系统故障常用简易诊断方法
种:传统经验法
也叫“望闻问切”诊断法,主要依靠日常经验,并借助一些简单的仪表,诊断故障发生的部位,找出故障原因的方法。
望:执行元件的运动速度有无异常变化;各测压点压力表显示是否符合规定值,有无大的波动;润滑油的品质和滴油量是否符合要求;冷凝水是否正常排出;换向阀排气口排出的空气是否干净;电磁阀的指示灯显示是否正常;紧固螺钉及管接头有无松动;管道有无扭曲和压扁;有无明显振动存在;加工产品质量有无变化等。
闻:气缸及换向阀换向时有无异常声音;系统停止工作但尚未泄压时,各处有无漏气,漏气声音大小及其每天变化情况;电磁线圈和密封圈有无因过热而发出特殊气味等;
问:查阅气动系统的技术档案,询问了解系统的工作程序、运行要求及主要技术参数;查阅产品样本,了解每个元件的作用、结构、功能和性能;查询检查维护记录,了解日常维护保养工作情况;询问现场工作人员,了解设备运行情况,了解故障发生前的征兆及故障发生的状况;了解曾经出现过的故障及其排除的方法。
切:触摸相对运动件、电磁线圈等处,如触摸2S感到烫手,则应查明原因。气缸、管道处有无振动感,气缸有无爬行感,各接头处及元件处手感有无漏气等。
经验法操作简单易行,但由于每个人的感觉、实际经验和判断能力的差异,故障诊断效果会存在一定的局限性。
第二种:推理分析法
也就是利用逻辑推理、循序渐进,寻找故障的真实原因的方法。
1、推理步骤:
从故障的症状到找出故障发生的真实原因,可以按照以下三步进行:
步,从故障的症状,推理出故障的本质原因;
第二步,从故障的本质原因,推理出可能导致故障的常见原因;
第三步,从各种可能的常见原因中,推理出故障的真实原因。
2、推理方法:
由简到繁、由易到难、由表及里逐一进行分析,排除掉不可能的和非主要的故障原因,先查故障发生前曾调整或更换过的元件,优先考虑故障率高的常见原因。
方法一:仪表分析法
利用仪表,如压力表、压差计、电压表、温度计、电秒表及其他电子仪器等,检查系统或元件的技术参数是否符合要求。
方法二:部分停止法
暂时停止气动系统中部分工作元件,观察对故障现象的影响。
方法三:试探反证法
试探性改变气动系统中部分工作条件,观察对故障现象的影响。
方法四:比较法
用标准的或合格的元件代替系统中相同的元件,通过工作状况的对比,来判断被更换的元件是否失效。