压缩机噪声诊断
一、压缩机
1. 双螺杆压缩机
双螺杆压缩机整机系统主要由电机、压缩机、管路、阀门和压力容器等组成,在运行过程中会受到气体力、惯性力、摩擦力等载荷的作用,激发压缩机机壳、整机底架、管道系统及支撑结构等,零部件的振动。这些振动如不采取适当的措施加以限制,则会带来一系列问题。
螺杆压缩机噪声主要分为,机械性噪声和流体动力性噪声。螺杆压缩机在电机交变应力的作用下,引起机械设备中的构件及部件碰撞、摩擦、振动,从而产生机械性噪声,常见的控制方法有在源头上控制噪声源,如减少运动部件的冲击,提高转子及其装配件的动平衡等。
2. 离心压缩机
当离心压缩机喘振时,将会隔几秒定期地发出一个深沉而又吼哮的噪音。此时,压缩机已处于不稳定状态下运行,转子在轴承间往复滑动,而且止推轴承、转子这种水平方向的移动,不可避免地要损坏压缩机轴封。
每一次的喘振表明了转子在轴承间又一次的滑动,这种喘振的声音越高,转子水平方向的作用就越强,危害性也越大,会导致由轻喘振到压缩机的完全自行破坏。
引起喘振的原因和补救方法:
排出压力太高,把压缩机后冷器的接收器放空以降低被压,或者把进入后冷器的冷却水阀门打开。
吸入气体温度高,多数的装置都备有在压缩机的吸入口上游注入少量轻的液烃类设施,液体蒸发冷却了吸入压缩机的热气流,也可以要求上游工序降低进入压缩机的气体温度。
3. 活塞式压缩机
活塞式压缩机的噪音与振动主要是机械方面的原因,同时由于工艺方面的排污不及时,油和水进入气缸同样也会产生噪音。
压缩机的气缸里面掉入一些机械杂质,或活塞和缸盖的间隙过小,压缩机在转动时气缸里就会发出“当当”的金属碰击声,发出这种声音时要立即停车检修。否则,就会发生重大的设备损坏事故。
由于工艺排污不及时,油和水进入气缸就会发生液击,液击的声音也是“咚咚”的响声,这时就应该加强排污,液击严重时还要停车检修。
二、主电机和风机
主电机噪声,主要是电磁噪声和电机尾部的散热风扇高速旋转产生空气动力性噪声。在电动机中,电磁噪声是由定、转子间的气隙中谐波磁场产生的电磁力波,引起定子与转子的振动而产生的。
主电机噪声要减小电磁噪声,就必须使用户电源电压稳定,并且提高电动机的制造及装配精度。
三、油气罐噪声
螺杆压缩机在运转过程中做周期性的吸排气,再加上内、外压缩比的不匹配,容易产生气流脉动,气流脉动通过排气管道传入油气罐,诱发流体动力性噪声。
油气罐的噪声可通过衰减排气脉动压力,在排气出口处安装气流脉动衰减器,可以衰减气流脉动或者加设排气缓冲器,缓冲器容积愈大,声频率愈低,降低的噪声愈多。不过在实际使用中难度较大,很少采用。
四、管路系统
管路系统的噪音,主要是带压气体的摩擦管路,或突然降压排空引起周围气体的扰动所产生的噪音。
阀门的噪音主要由于以下几方面原因:
止回阀振动所产生的噪音;
阀座上落入异物;
闸板阀泄漏。
止回阀振动产生的噪音主要来自于升降式的止回阀,一般在压缩机和泵的出口都安有止回阀,其目的是在停压缩机和泵时,防止高压气体和液体倒回系统。
五、加卸载噪声
压缩机加载工作时,进气阀开启,气流被吸入主机压缩,压缩过程产生的噪声以声波的形式从进气口辐射出来,这样便产生了进气噪声。压缩机的进气口噪声呈明显的高频特性,噪声的强度随着负荷的增加而增大。另外,进气口噪声与主机机体结构,进气阀的通径大小,阀门结构等有关。
卸载时发出嗡嗡的噪音,是正常的卸载放气声音。如果是异常的噪音并有振动的现象,就要检查主机、主电机、风扇电机的轴承。
组合式压缩空气冷干机漏气故障分析
1 工作原理
组合式压缩空气冷干机布置在空压机后端,空压机、冷干机前后串联布置,构成压缩空气系统。根据空气冷却与吸附干燥原理,从空压机出来的压缩空气先经过冷干机制冷系统冷却到一定的露点温度,析出相应水分。进行初步的气液分离后,压缩空气进入冷干机的吸附塔进行深度干燥处理,获得高品质的气源。
2 工作流程
乌沙山发电厂干输灰系统采用 JAL_40M组合式压缩空气冷干机 , 正常运行时 ,系统压力在 0.6MPa左右。冷干机的工艺流程主要分为冷却和干燥两部分。冷却部分的主要原理是制冷循环原理。通过压缩机、 冷凝器、膨胀阀、蒸发器这制冷系统的四大部件和附属设备 ,对压缩空气进行冷却和初步的除湿。这部分与本文所述缺陷无关,不作工艺流程的详述。
干燥部分的工艺原理如图 1所示。
图 1中,IA、IB分别是 A、B塔的进气气动阀,RA、RB分别是 A、B 吸附塔的排气气动阀。几个气动阀的用气原先取自干燥系统的入口处。OA、OB.CA、CB是布置在A、B塔出口管路上的逆止阀。RV是手动调压阀。经过制冷系统冷却后的压缩空气到达干燥系统。冷干机正常运行时,A、B塔轮流倒换工作。
启动:空压机系统正常启动前,冷干机处于备用状态。此时,RA、RB 阀门处于关闭状态,IA、IB阀门处于开启状态。这时,有其它的空压机为用户提供压缩空气,其中有一小部分压缩空气从用户端通过 RV调压阀和 OA、OB逆止阀进入A、B塔 ,并进一步往回返到前面的空压机里 , 这样,在设备处于备用状态下为气动阀提供了气源。系统启动时,首先开启冷干机,IB阀门关闭,然后RB阀门打开,A塔开始工作。然后,启动空压机 ,整个系统正常工作。
运行:A塔进行工作时。B塔进行干燥剂再生,此时,IA、RB阀门打开,IB、RA阀门关闭。空气经过IA进入A塔进行干燥,然后从A塔顶部出去经过CA逆止阀后,大部分的压缩空气到达后置的除尘过滤器进行再次过滤后,得到高品质的气源输送到用户。另有—小部分气通过调压阀RV,逆止阀OB从B塔顶部进人 ,对B塔干燥剂进行再生 ,然后经过B塔底部的RB阀门,*后经过排气消音器排空。
倒换:A塔运行20分钟至半小时后,系统由A塔倒换至B塔运行。这时,RB阀门关闭,IB阀门打开,B塔压力开始升高。等到压力平衡后, IA阀门关闭,RA阀门打开,A塔中的压力瞬间排空,排气消音器处能听到较大的排气声。此时,B塔开始工作,A塔开始再生。
停运 :系统正常停运时 ,先停运空压机 ,再停运冷干机 。此时,RA和 RB关闭,IA和IB打开,系统恢复到备用状态。
3 故障现象
运行中的冷干机发生漏气时,排气消音器出口有很大的漏气声,A、 B塔压力都在0.4MPa左右,输灰压缩空气罐压力会在短时间内下降到 0.4MPa以下,造成输灰系统输灰不畅,气动阀门故障等各种问题,给工业生产造成压力。这类问题往往在吸附塔下一次倒换后消失。
4 故障分析
此类漏气故障发生时,往往会在短时间内造成系统压力下降,因此 ,第一时间赶到现场的运行人员往往会选择及时倒换设备,这样会导致故障原因不能在第一时间判断出来。因此,在此类缺陷发生时,可以先将其它空压机和对应的冷干机启动,但暂时不把漏气的设备停运。技术人员应第一时间赶到现场观察各个阀门的状态。如果因为设备紧急倒换错过判断故障的第一时间,可以根据停运时4个气动阀门的状态来进行判断,同时可以将该设备重新启动,观察运行,进一步确认故障原因。
当漏气发生时 ,应打开冷干机下方的盖板 ,观察 A、B塔底部的四个气动阀的状态。同时结合 A、B塔压力表的参数进行辅助判断。正常运行时,图1中的四个气动阀,互成对角线的两个阀门状态是一致的。不同的阀门出现故障时,具体的情况如下:IA阀门故障:如果IA阀门故障, 则漏气时系统B塔处在运行状态,RB阀门关闭,IB、RA开启,IA关故障(实际处于开启或者未关严状态),同时,A、B塔压力表压力在0.4MPa 左右,大量空气从排气消音器处漏走。此时,如果将系统停运,先停运空压机,再停冷干机,那么,系统内的压力会从A塔排气口漏走,冷干机停运时,气动阀门已经没有足够的气源了,阀门状态不会发生改变,同时, A、B塔压力显示为0。如果没有停运,等到系统倒换至A塔运行后,系统恢复正常,A塔压力达到 0.6MPa,B塔压力为 0。IA、RB阀门开启,IB、 RA阀门关闭。
IB阀门故障:同理,IB阀门故障时,则漏气时系统A塔处在运行状态,RA阀门关闭,IA、RB开启,IB关故障 (实际处于开启或者未关严状 态),同时,A、B塔压力表压力在0.4MPa左右。此时将系统停运,阀门状态不会发生改变,A、B塔压力显示为0。如等到系统倒换至B塔运行后, 系统恢复正常,B塔压力达到 0.6MPa,A塔压力为 0。IA、RB阀门关闭, IB、RA阀门开启。
RA阀门故障:RA阀门故障时,则漏气时系统 A塔处在运行状态, IB阀门关闭,IA、RB开启,RA关故障(实际处于开启或者未关严状态), 同时,A、B塔压力表压力在 0.4MPa左右。此时将系统停运,阀门状态不会发生改变,A、B塔压力显示为0。如等到系统倒换至B塔运行后,系统恢复正常,B塔压力达到 0.6MPa,A塔压力为 0。IA、RB阀门关闭,IB、 RA阀门开启。
RB阀门故障:同理,RB阀门故障时,则漏气时系统B塔处在运行 状态,IA阀门关闭,IB、RA开启,RB关故障 (实际处于开启或者未关严状态),同时,A、B塔压力表压力在0.4MPa左右。此时将系统停运 ,阀门状态不会发生改变,A、B塔压力显示为0。如等到系统倒换至A塔运行后,系统恢复正常,A塔压力达到 0.6MPa,B塔压力为0。IA、 RB阀门开启 ,IB、RA阀门关闭。
根据不同阀门的故障造成的不同现象 ,表1将正常状态及异常状态下的不同现象进行归纳总结,方便故障时进行快速排查。即便故障发生时设备紧急倒运,也可以根据异常停运时阀门的状态判断出是具体哪个阀门发生故障。
5 处理措施
根据故障现象判断出具体的故障阀门后,我们要采取具体的处理措施。通常阀门故障可能的原因有以下几种:a.乱阀体损坏;b.气缸损坏 ;c.气源管路堵塞;d.电磁阀组件故障;e.气源压力不足。
对于前四种原因,分别需要更换相应的阀体 、气缸 、气源管或电磁阀。对于气源压力不足的现象 ,则需要检查阀门气源的接入点 ,必要时进行改造。图2指出了乌沙山电厂气源管改造前后冷干机气动阀的气源接入点 。原先气源接在干燥系统之前 ,改造后接到了冷干机除尘过滤器之后。
改造前,气源在干燥系统之前,气源负荷受到空压机加卸载的影响, 存在气源不足的可能性,会造成阀门动作故障。改造后的气源布置在后端,气源压力很稳定,不会受空压机加卸载的影响。即便系统故障停运, 也能够保证有足够的气源供阀门动作。此外,异常停运之后,四个阀门的状态较改造前有所不同。表2是气源改造后,异常停运时的阀门状态和 A、B塔压力。
同时,后端的空气经过干燥系统和除尘过滤器的处理后 ,品质更好, 能有效延长气缸的使用寿命,同时,还能减少气源管的堵塞。
6 结论
运行中的冷干机发生漏气会造成输灰系统输灰不畅 ,气动阀门故障等各种问题 ,给工业生产造成极大的压力 。故障发生时,应第一时间赶到现场观察各个阀门的状态。如果因为设备紧急倒换错过判断故障的第一时间,可以根据停运时4个气动阀门的状态来进行判断 。同时 ,也可以将该设备重新启动观察运行,进一步确认故障原因。专业人员要根据发生故障时的具体现象,准确判断出具体是哪个阀门发生了故障,并对阀门和相应的气源管路系统进行检查和处理。同时,建议将冷干机气动阀门的用气从前端供气改成后端供气,确保拥有高品质的稳定气源。